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The general triple-deck theory of laminar viscous-inviscid interaction is extended to 
axisymmetric bodies. With body radiusllength ratios scaled in terms of Reynolds 
number as RedB (p > 0 ) ,  i t  is found that for /3 < 3 the only three-dimensional effect 
is that on the incoming undisturbed boundary-layer profile as accounted for by the 
Mangler transformation. When /3 = 3, however, an explicit axisymmetric effect on 
the interaction equations also enters: the upper-deck flow is governed by the equation 
of axisymmetric potential disturbance flow, whereas the middle and lower decks are 
still governed by equations of two-dimensional form. When p > 3, the body is so 
slender that transverse curvature effects become important and the lower decks too 
are explicitly influenced by three-dimensional effects. A detailed example application 
of this theory is given for weak interactions on a flared cylinder and cone in supersonic 
flow with /3 Q 3. The three-dimensional effects on the interactive pressure and 
shear-stress distributions are shown to relieve the strength of the interaction and 
reduce its upstream influence, as expected. Correspondingly, i t  is found that the 
smallest flow deflection angle provoking incipient separation increases with increasing 
axisymmetric body slenderness. These results are shown to be in qualitative agree- 
ment with several experimental studies. 

1. Introduction 
Lighthill (1953), in his classic study of the upstream propagation of small 

disturbances in shock-wave boundary-layer interactions, first proposed that the 
interaction region consists of three physically distinct layers or decks: the upper 
region outside the boundary layer where inviscid potential flow dominates, the main 
layer which occupies the major part of the boundary layer and behaves as an inviscid 
rotational flow, and an inner deck where the viscous-disturbance shear stress must 
be taken into account. Many interaction problems in which the flow properties have 
a rapid streamwise change, such as the flow around a corner (Lighthill 1953; 
Stewartson 1971) and the flow past a small hump (Smith 1973), can be treated in 
this way. A systematic asymptotic study of this triple-deck structure has been given 
by Stewartson & Williams (1969), Stewartson (1974), Messiter (1970) and Neiland 
(1969), each of whom independently showed that the resulting problem reduces to 
solving the usual boundary-layer equations with unusual boundary conditions. Since 
then, many investigators (Jenson, Burggraf & Rizzetta 1975; Davis & Werle 1976; 
Williams 1975) have devoted attention to solving these nonlinear equations by 
numerical methods, and the triple-deck theory has become a powerful tool in the 
study of viscous-inviscid interaction problems. On the other hand, non-asymptotic 
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FIGURE 1 .  Coordinate system on a body of revolution. 

versions of this theory have also been developed by Tu & Weinbaum (1976) and by 
Inger (1 980) for laminar and turbulent flows respectively, because the asymptotic 
theory holds only for extremely large Reynolds number, especially in transonic flow 
problems. 

However, most of the studies to date are only concerned with two-dimensional flow. 
Those studies published to date that have considered three-dimensional effects 
(Smith, Sykes & Brighton 1977; Duck 1981; Ryzhov 1980) involve hump-like 
geometries on otherwise planar surfaces but have not dealt with axisymmetric flow 
situations. Accordingly, this paper is addressed to a study of viscous-inviscid 
interaction triple-deck theory for axisymmetric bodies with a detailed illustrative 
application to the specific problem of a supersonic compressive interaction in a flared 
body. Section 2 presents a discussion of the general theory for either subsonic or 
supersonic interactions ; the specific supersonic flare problem including an analytical 
solution for weak compressions is then given and discussed in $83 and 4. 

2. Triple-deck theory for axisymmetric flows 
Consider the high-Reynolds-number flow past a body of revolution a t  zero angle 

of attack in which there is a local disturbance in the vicinity of the streamwise station 
L,* due (say) to an abrupt surface-geometry change or an impinging external shock 
wave in the supersonic case. The consequent rapid change of the pressure and 
boundary-layer thickness causes a local interaction between the outside main stream 
and the laminar boundary-layer flow that takes place in a short region having the 
aforementioned lateral triple-deck structure of the disturbance field. Suppose that 
the fluid is Newtonian with constant Prandtl number and Chapman-Rubesin 
viscosity law and that the wall surface is maintained a t  a constant essentially 
adiabatic temperature. As shown in figure 1 ,  we set up a local body-oriented 
coordinate system (x*, y*) with the origin centred in the interaction zone. The 
pressure, density, viscositv and temperature are denoted bv v. n. u and T :  91 m t l  1 )  
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are the velocity components in the x- and y-directions; the subscript GO refers to the 
conditions at the outer edge of the boundary layer in the absence of interaction, and 
the subscript w refers to the wall conditions. The superscript * denotes the original 
dimensional physical variables, while scaled dimensionless variables will be denoted 
without an asterisk. L,* is the characteristic length which usually measures the 
distance of the interaction region from the nose of the body, r$ is the reference radius 
of the body corresponding to  L,*, and r* is the radial coordinate for a point in the 
flow field which is related t o  the (x*, y*)-coordinates by 

r* = r,*+y* cos$+x* sin$. ( 1 )  
Here # is the inclination of the body generator with respect to the symmetry axis. 
The same basic assumption as the two-dimensional version (Stewartson & Williams 
1969; Stewartson 1971) is made that the interaction region consists of the three 
aforementioned decks, which is valid for all except very slender needle-like bodies. 

For axisymmetric flow, the continuity equation in all three decks can be written 

a(r*p*u*) + a(r*p*v*) - in these coordinates as 
- 0. ax* aY * 

The momentum equations are 

( *  *g), au* au* ap* 1 a p*u*-+p*v*- = --+-- 
ax* ay* ax* r*ay* 

av* av* 
ap* .... p*u*-+p*v*- = --+ 

ax* ay* ay* 

(3) 

(4) 

Here, for the middle deck and the upper deck, the viscous terms can be neglected, 
and, for the lower deck, only the viscous terms of the most importance are retained 
in the leading approximation. The energy equation for the upper and middle decks 
can be written as 

1 Dp* y Dp* 0 
p* Dt* p* Dt* ( 5 )  

for inviscid flows, where the substantial derivative is defined by 

a a 
Dt* ax* ay* 

- u*p++*- D 
-- 

and y is the ratio of specific heats. In  the lower deck, the energy equation is not 
necessary because the flow velocity is so low that along an adiabatic wall incompressible 
disturbance flow occurs with fluid properties based on the wall temperature (Stewa- 
rtson 1974). 

From the general equations described above, we can see that the axisymmetric 
interaction problem differs from the two-dimensional one in the appearance of the 
radial coordinate r* in the continuity equation for all three decks and in the 
momentum equation for the lower deck as a transverse curvature effect on the viscous 
term. Using ( l ) ,  we not that  we can rewrite (2) and (3) as 

au* au* ap* a au* au* cos + 
ax* ay* ax* ay*( a,*) * a y * T >  

p*u*-+p*v*-= --+- p*- + p  (7) 

while (4) reduces to dp*/dy* z 0 for the thin inner deck. 
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The basic flow is assumed to be the undisturbed laminar boundary-layer flow on 
the body of revolution, which in general differs from a Blasius profile owing to  the 
Mangler transformation (see below) except in the special case of a cylindrical body 
downstream of the nose. The local interaction with the main stream outside changes 
this velocity profile ; in what follows, primed variables denote this perturbation field. 
Now a detailed analysis readily shows that the scaling law, the asymptotic analysis 
for Re -P 00, and the matching steps are exactly the same as the two-dimensional 
version (see Stewartson 1974) and so will not be repeated here; thus i t  only remains 
to show when the explicit axisymmetry terms can be neglected and when they must 
be retained. It is known from the two-dimensional version that in all of the three 
decks the streamwise length scale has an order of e3, where E = Re-: is a small 
parameter and Re = pzUzL,*/pz, so that x* = O(a3) .  We also have p‘ = O(a2) .  

Now we assume that we have a slender body r$ = O(@) with /3 > 0 and that we 
are downstream of the stagliation region if it is not sharp-nosed si;ch that 

cosq5 = O(1) ,  sin# = O ( E ~ ) .  (8) 

Since y* = O(e4) ,  u’ = O ( s ) ,  ‘u’ = Ole2) and p’ = O(e)  in the middle deck for either 
subsonic or supersonic external flow, we find that the first two terms of (6) are of order 
eP2,  the third term of order unity, and the last term of order a 2 - I .  Thus, in the very- 
large-Reynolds-number limit, i t  can be seen that, if /3 < 4, the last two terms can be 
neglected in the leading approximation compared with the first two terms, reducing 
the equation to a two-dimensional form. Correspondingly, in the upper deck we have 
y* = O(e3) ,  u’ = O(e2) ,  w’ = O(e2)  and p’ = O ( e 2 ) ;  the same procedure shows that the 
first two terms in (6) are of order e-l, the third germ is of order unity, and the last 
term is of order ~ ~ - 8 .  Thus, in the leading asymptotic E - P O  approximation, the 
continuity equation here reduces to  two-dimensional form if /3 -= 3, whereas the 
axisymmetry terms must be retained when /3 2 3. 

In  the lower viscous-disturbance deck the appropriate scaled variables are 
y* = O(e5) ,  u‘ = O ( E ) ,  w‘ = O(e3)  and p* = p:. It is then found that the first two terms 
in (6) are of order EP,  the third term of order E ,  and the last term of order ~ ~ - 8 .  In 
the momentum equation ( 7 )  the two terms on the left-hand side are of order cl, the 
second term on the right-hand side of order e-l, and the last term of order P-8. 
Therefore, the lower-deck equations also reduce to two-dimensional form when /3 < 5 .  

Summing up the above analysis of the leading approximation for Re -P co, the 
following general conclusions can be deduced for either subsonic or supersonic 
external flow. (i) The triple-deck equations for bodies of revolution with r$ - Q are 
exactly the same as those for two-dimensional flow when /3 < 3. In this case, the 
axisymmetric effect resides solely in the incoming undisturbed boundary-layer 
profile, as treated by the Mangler transformation (see $3.4). (ii) For the case /3 = 3, 
the flow in the upper deck is governed by the equation of axisymmetric potential flow, 
whereas in the middle and lower decks the flow is still governed by equations of 
two-dimensional form. (iii) For /3 > 3, the body of revolution is so slender that the 
middle deck will experience explicit three-dimensional effects that invalidate the 
aforementioned scaling laws. Furthermore, the boundary-layer thickness is compar- 
able to the body thickness and thus is no longer described by the usual boundary-layer 
equalions ; instead, thick axisymmetric boundary-layer theory (White 1974, p. 347) 
must be applied. Fortunately this case is not of much practical interest and so will 
not be investigated further here. 

Because of the already well-developed theory for two-dimensional triple-deck 
structure, we concentrate on the case /3 = 3 for a typical problem, to  illustrate how 
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FIGURE 2 .  Flow past a cylindrical body with a conical frustum. 

the explicit three-dimensional relief effects fundamentally alter viscous-inviscid 
interaction properties. 

3. Compressive supersonic interaction in a flared body 
3.1. Mathematical formulation 

As shown in figure 2, we consider compressible flow past a cylindrical body of 
revolution followed by a conical frustum or flare where a compressive boundary-layer 
interaction takes place a t  the corner. Let a denote the flare angle; the body radius 
is supposed to be of order e3. 

The Blasius solution can be assumed for the undisturbed boundary-layer flow on 
the cylindrical part of the body, since this flow is the same as that on a flat plate 
in the absence of transverse curvature effects. As demonstrated in the last section, 
the present problem differs from the two-dimensional version only in the upper d w k  
where we have axisymmetric potential flow. Thus we may introduce the two- 
dimensional lower-deck scaling (Stewartson 1974) : 

v* = -21, e3d a* = 6 2 - 0 1 ,  b 
a a 

where C = p z T & / p g T z ,  6 = IW,- 1 I, and h is a value determined by the slope of 
the velocity profile at the wall in the basic undisturbed boundary layer (for the 
present example h = 0.3321). The resulting problem then reduces to solving the 
inner-deck equations 

-+- = 0, 
au av 
ax ay 

au au d p  a z U  

ax ay d x  ayz  
'@-+v- = --+- 
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with the no-slip impermeable wall boundary conditions 

u = w = 0 a t  y = a H ( x ) x  (11) 

u + y + A ( x )  as y + w .  (12) 

plus the inner-outer matching condition (see Stewartson 1974) 

Here H ( x )  is Heaviside's unit function and - A ( x )  can be regarded as a displacement 
thickness which is transmitted unchanged through the middle deck to the upper deck 
and linked with the pressure distribution by the solution to  the linearized potential-flow 
equation in the upper deck. 

Now let us restrict attention to  the case of supersonic flow M ,  > 1, where the 
flare-generated compression takes place across an oblique shock. I n  the region very 
close to the corner where the radius of the body has only a little change, a 
quasicylindrical approximation can be applied t o  relate p to A as follows (see Ward 

where A ( -  00) = 0, W ( z )  is a function which has been given in figure 8.1 of Ward 
(1955), and where the upper limit of the integration has been replaced by 00 because 
W(z)  = 0 for z < 0. Here the scaled radius of the body is defined by 

We note that W(z)  has the closed-form Laplace transform 

where KO and K,  are modified Bessel functions. The resulting problem is thus closed 
by (lo)-( 13), but the solution to these nonlinear equations in general must be obtained 
numerically.? However, under the assumption that the flare angle a is sufficiently 
small, an instructive linearized solution can be obtained in closed analytical form as 
presented in $3.2. 

3.2. Linearized approximation 
We consider weak compressive interactions due to small flare angles; to a first 
approximation, following Stewartson (197 l ) ,  we thus take 

where U ,  V and P are the disturbance-amplitude distribution functions. Then 
substituting into ( lo),  linearizing the results to first order in 01 and then taking the 
Fourier transform with respect to x, the closed-form solution of the resulting 
well-known ordinary differential equation for that  dies out a t  infinity is easily 

(17) 

obtained as au 
- = C(k)Ai [ ( O + i k ) j y ] ,  
8Y 

t An efficient iterative method based on the Fourier transform, for example, is described by Duck 
(1983). 
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00 

v(y, k) = U(x, y) ecikX dx 

433 

where 

denotes the Fourier transform. Here Ai denotes the Airy function of argument 
(0 + ik)i, assumed to be regular in the k-plane cut along the positive imaginary axis. 
The constant C(k) here can be determined by integrating (17) with respect to y, using 
known integral properties of the Airy function, and then applying the transform of 
the linearized version of conditions (11) and (12). 

The corresponding pressure distribution transform can now be found by using the 
so-called compatibility condition obtained by satisfying the momentum equation (10)  
a t  the wall ; from its transform in the linear approximation, this yields 

where 0 = [ - 3 Ai' (0)]3 = 0.8272, 

N(k) = &)T(irok)-(O-ik)~, 

The inversion of (18) can be carried out by the Faltung theorem to obtain 

where 

For 6 < 0, the integration path along the entire real axis can be closed by a half-circle 
of infinite radius in the lower plane. Since i t  can be shown that the function N(k) 
has a zero k = -iK1 on the negative imaginary axis (where K~ can be found by 
numerical procedure), the residue theorem yields 

where, in terms of the Bessel functions KO and K,, 

Using (23) and (24), the integration of (20) can be carried out to  yield 

1 

K1 
P(x) = ,&(z) (x' < 0). 

We note here that, in the limiting case ro + 00, it  can be shown that T(irok) --f 1, 
which from (19) gives for the zero of N(k) the closed result K~ = 8. Correspondingly one 
finds that 

which is exactly the two-dimensional result given by Stewartson (1971).  

P(x)+$eez as r 0 + m ,  (26) 

Turning to the downstream region 5 > 0, i t  may be expected that the integrand 
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in (21) is regular in the upper half of the plane cut along the positive imaginary axis, 
so that the Q(LJ integration along the entire real axis can be changed into that around 
the positive imaginary axis. After some algebraic manipulation, the result is 

Equation (20) then yields 

PO P X  

where Im denotes the imaginary part. The indicated integration can be carried out 
numerically with care as shown in the appendix. 

With the pressure field in hand, the scaled perturbation shear stress may now be 

(29) 

determined as au 
7=@) y=o = l + & - )  y=0 . 

From the foregoing solution we have 

so that substituting (18 )  and inverting by use of the Faltung theorem yields 

1 Ai(0) & eikt dk where 
a([) = -- 

27rA1 (0) 

Applying the residue theorem leads to the final results that  

Ai (O) KIZ P ( x )  (x < O ) ,  - 3 7  

where Re denotes the real part. The indicated integration again can be carried out 
numerically as shown in the appendix. 

3.3. Discussion of results 
The upstream influence is determined by the zero of the function N (  - - i ~ ) ;  figure 3 
shows this function plotted versus K for a typical ro, from which we see that a zero 
K~ exists for r o K  > 0.381. Figure 4 presents the calculated K~ as a function of l /ro,  
which is nearly a linear function. It is scen that the two-dimensional result K~ = 0.8272 
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1 l ro 

FIGURE 4. The zero of the function N(  -i~) versus 1 , ' ~ " .  

is approached in the limit ro -+ CO, and that K~ increases as r,, decreases. Because K~ 

is the logarithmic decrement introduced by Lighthill (1953), this result implies that 
the upstream influence distance of the disturbance from the conical frustum decreases 
with an increasing three-dimensional relief effect. 

The pressure and shear-stress distributions calculated from ( 2 5 ) ,  (28) and (33) are 
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FIGURE 5 .  Pressure distribution. 
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FIGURE 6. Disturbed shear-stress distribution. 

plotted in figures 5 and 6 for different ro. These curves in the ro = 00 limit correspond 
to the two-dimensional solution studied by Stewartson (1971); with decreasing ro it 
is seen that the interactive disturbance decreases owing to the three-dimensional relief 
effects. It may be noted in this connection that a closed-form solution can be obtained 
in the formal limit ro -+ 0 that yields zero upstream disturbance for x < 0 and 
negative pressure perturbation downstream for x > 0 ; however, this mathematical 
limit has no physical meaning in the present study because of the abovementioned 
exclusion of transverse curvature effects that  would, in fact, actually be important 
in such a limit. For comparison figure 7 illustrates results based on the linearized 
potential-flow theory; i t  shows that the cylindrical part of the body experiences no 
disturbance from the corner because the perturbation cannot travel upstream in 
inviscid supersonic flow, and that two-dimensional compression occurs a t  the corner, 
followed by a pressure decay to the value for a cone (exact theory) or to a value of 
zero (quasicylindrical approximation). Since the present theory shows that the initial 
pressure rise due to the flow deflection is lower than the two-dimensional value when 
viscous interaction effects are included, the pressure decay along the flare is even 
more rapid and yields negative values far downstream as a result ofthe quasicylindrical- 
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Exact (Lighthill 1954) 
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FIGURE 7 .  Pressure distribution by potential-flow theories. 
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r0 

FIQURE 8. Flow deflecting angle for provoking separation. 

flow approximation used on the flare ; this could be readily corrected by using instead 
a locally conical (‘ tangent-cone ’) flow model downstream. 

The disturbance skin-friction results also enable an estimate of when incipient flow 
separation occurs near the corner, an event of both basic and practical interest. To 
be sure, separation itself is not accurately predicted by the present linear approxim- 
ation because i t  implies that  the disturbed shear stress is much smaller than the 
Blasius one; nevertheless, i t  does give a rough indication of when separation 
(7’ + T~ x 0) is imminent. Figure 6 shows that the minimum shear stress occurs a t  the 
corner, so that flow separation will occur there when 01 is sufficiently large. The lowest 
value of the flare angle a, a t  which separation occurs is 

x=o 
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FIGURE 9. Supersonic flow past a double cone. 

figure 8 presents the results of the linear-theory prediction for a, as a function of 
T o ;  as expected, a, increases owing to the three-dimensional relief effects. 

3.4. The role of a n  inclined forebody 

According to the general triple-deck theory in $2, the presence of a non-cylindrical 
forebody would modify the foregoing results by virtue of its influence on the 
undisturbed incoming boundary layer via the Mangler transformation (indeed, for 
p < 3, this influence would be the only three-dimensional effect: the above results 
would be negligible in the leading asymptotic approximation). For example, consider 
a supersonic flow past a flared cone as shown in figure 9, where the forecone region 
is the basic undisturbed flow. Then by the Mangler transformation, the flow around 
the forecone can be transformed into a flow past a flat plate; thus for the cone, the 
key property a t  the undisturbed boundary-layer velocity profile a t  the wall on which 
the interaction depends is 

where x; is the distance measured along the cone generator from the nose to the corner 
and h = 0.3321 is the Blasius-solution value. I n  comparison with the two-dimensional 
version, this expression differs from the flat-plate result only in the factor 2/3 : thus, 
for the present example, we need only use h = 0.33212/3 in (9) instead of 0.3321 in 
two-dimensional flow. This immediately implies that  the perturbation from the flare 
has an even smaller upstream influence than that due to a two-dimensional flap a t  
the same angle predicted above, because of the higher velocity near the wall in the 
boundary layer on the body of revolution. 

4. Concluding remarks 
Owing to the restrictions imposed by the very large Reynolds number limit of the 

present theory, direct detailed quantitative comparisons of our results with available 
experiment are difficult (see e.g. Burggraf 1975). Nevertheless, support for the 
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FIGURE 10. Two-dimensional versus axisymmetric flare interaction pressure 
distributions: experiments of Ginoux (1969). 

qualitative predictions of the axisymmetric three-dimensional effects on local viscous- 
inviscid interaction can be found in several experimental studies of laminar boundary- 
layer-compression-corner interactions. For example, Kuehn's (1962) experiments 
have shown that the upstream influence distance of a flare-induced supersonic 
laminar interaction on a cylinder is indeed smaller than that due to a two-dimensional 
ramp of the same angle, while incipient separation occurs at a noticeably higher 
deflection angle as our analysis suggests. The data obtained by Ginoux (1969) a t  Mach 
2.25, illustrated here in figure 10, in terms of the comparative interactive pressure 
distributions on a wedge verses flare for two different deflection angles, also strongly 
support the theoretical predictions shown in figure 5 : the axisymmetric flare clearly 
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causes a shorter and lower-level interactive influence region than the flap of the same 
angle. Similar experimental results at higher Mach numbers have also been presented 
by Stollery (1975). 

Appendix. Numerical treatment of certain integrals in the theory 
In the evaluation of the integral in (28), the function T(eniro@) is evaluated by 

using the following expressions deduced from equation (6.9.31) of Abramowitz & 
Stegun (1965) : Ko(eni T o @ )  = Ko(rOOy) -7ri10(r00y), 

K,(eni rOyO)  = -K l ( ro  e ~ ) - - ~ i I l ( r 0 ~ ~ ) ,  

where I ,  and I, are modified Bessel functions. Moreover, great care must be taken 
in the subsequent numerical quadrature because of its slow convergence as y + 00. 

It can be shown that the integrand goes to zero as y + 0 and behaves as - 1/3 x/20$ 
for 7 + co, so that the integral is carried out first from 0 to the limit of some large 
given value B (say) by Simpson’s rule, then from B to co by the analytical result 

which gives a non-trivial contribution to the total value of the integral even for a 
very large value of B. 

Turning to the integral in (33),  even more care is required in its numerical 
evaluation, not only because of slow convergence as y + co but also because of special 
handling of its lower limit y + 0. The integrand behaves as y-j/log ($r,er) for y + 0, 
and as 1/75 for 7 + co, so that the entire interval of the integration is divided into 
three parts : from 0 to A ,  from A to B, and B to 00, where A and B are suitably small 
and large values respectively. Then the integral on the first interval is found by the 
approximation log A Q@ 

- ax JoA+ - J-, -p  
with the use of numerical quadrature, the second interval is treated by Simpson’s 
rule, and the last by the analytical result 
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